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Abstract. The Aharonov–Bohm–Coulomb potentials in two dimensions may describe the
interaction between two particles carrying electric charge and magnetic flux, say, Chern–Simons
solitons, or so-called anyons. The scattering problem for such two-body systems is extended
to the relativistic case, and the scattering amplitude is obtained as a partial wave series. The
electric charge and magnetic flux is (−q, −φ/Z) for one particle and (Zq, φ) for the other. When
(Zq2/h̄c)2 � 1, and qφ/2πh̄c takes on integer or half-integer values, the partial wave series is
summed up approximately to give a closed form. The results exhibit some nonperturbative features
and cannot be obtained from perturbative quantum electrodynamics at the tree level.

In a recent letter, we have studied the scattering of relativistic electrons (or positrons) by the
Coulomb field of a nucleus in two dimensions [1]. The Dirac equation was solved in polar
coordinates, and the scattering amplitude was obtained as a partial wave series. For light
nuclei the series can be summed up approximately to give a closed result. The result, though
being approximate, exhibits some nonperturbative features and cannot be obtained from the
lowest-order contribution of perturbative quantum electrodynamics (QED). This feature is not
manifest in the corresponding result in three dimensions. The purpose of this paper is to extend
our previous work to the case with both Aharonov–Bohm (AB) and Coulomb potentials. In
the nonrelativistic case, this can be described by the stationary Schrödinger equation,

− h̄2

2µ

(
∇ + i

qφ

2πh̄c
∇θ

)2

ψ − Zq2

r
ψ = Eψ (1)

where (r, θ) are polar coordinates on the xy plane, and has been studied in the literature [2,3].
Note that this is a two-dimensional model and is different from the three-dimensional
Aharonov–Bohm–Coulomb (ABC) system studied in the literature [4–9]. Of course the AB
potential is the same in either two or three dimensions. The difference lies in the Coulomb
field. Previously the ABC system (in two or three dimensions) was regarded as describing a
charged particle (with charge −q) moving in both an AB (with flux φ) and a Coulomb field
generated by external sources. Thus if the Coulomb field is generated by a nucleus (with
charge Zq), one should have a magnetic flux string fixed on the nucleus to generate the AB
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potential. The situation seems difficult to realize in practice. In a recent paper [3], we have
shown that the above equation can describe the relative motion of two particles, one carrying
electric charge and magnetic flux (−q, −φ/Z) and the other (Zq, φ), where Z �= 0 is a
real number. Then µ is the reduced mass of the system. Such particles appear in (2 + 1)-
dimensional Chern–Simons field theories as charged vortex soliton solutions [10–17]. They
are also called anyons because their angular momentum may take on values other than integers
or half-integers. Applications of such objects can be found in the study of the fractional
quantum Hall effect [18–21], superconductivity [21, 22] and repulsive Bose gases [23]. Of
course the solitons have finite sizes, and the real interaction between them may be rather
complicated. Thus the above description by the two-dimensional ABC system is merely a
rough approximation. In any case, the model may be of interest in itself since exact analysis is
possible. A relativistic case described by the Klein–Gordon equation has been studied in the
literature [24]. Here we will deal with a spin- 1

2 particle described by the Dirac equation.
Let us begin with the stationary Dirac equation translated from equation (1):[

cα ·
(

p +
qφ

2πc
∇θ

)
+ γ 0µc2 − κ

r

]
ψ = Eψ (2)

where κ = Zq2, p is the momentum operator, α = γ 0γ and γ µ = (γ 0,γ) (µ = 0, 1, 2) are
Dirac matrices satisfying {γ µ, γ ν} = 2gµν where gµν = diag(1,−1,−1). In two dimensions
the Dirac matrices can be realized by 2 × 2 matrices:

γ 0 = σ 3 γ 1 = iσ 1 γ 2 = iσ 2 (3)

where the σ are Pauli matrices. Thus ψ is a two-component spinorial wavefunction. As in
the case with a pure Coulomb field, it is not difficult to show that the conserved total angular
momentum operator is

J = xpy − ypx +
ih̄

2
γ 1γ 2. (4)

Therefore the particle has spin 1
2 .

The Dirac equation (2) can be solved in the polar coordinates by separation of variables.
Bound-state solutions (for Z > 0 or κ > 0) are relatively easy to obtain, and some results
will be given at the end of the paper. Scattering solutions exist when E > µc2 or E < −µc2.
The latter correspond to antiparticles after second quantization. At the level of single-particle
theory, their scattering can be treated formally in a way similar to the former. Thus we only
consider scattering solutions with E > µc2 in the following. We use the representation (3).
Let

qφ

2πh̄c
= m0 + ν (5)

where m0 is an integer and − 1
2 < ν � 1

2 , and

ψj(r, θ) =
(
f (r) exp[i(j − m0 − 1

2 )θ ]/
√
r

g(r) exp[i(j − m0 + 1
2 )θ ]/

√
r

)
j = ± 1

2 ,± 3
2 , . . . . (6)

It is easy to show that Jψj = (j − m0)h̄ψj . Thus j is a good quantum number. Substituting
this expression into equation (2) we obtain two coupled ordinary differential equations for the
radial wavefunctions:

df

dr
− j + ν

r
f + k1g +

γ

r
g = 0 (7a)

dg

dr
+
j + ν

r
g − k2f − γ

r
f = 0 (7b)
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where

k1 = E + µc2

h̄c
k2 = E − µc2

h̄c
γ = κ

h̄c
= Zq2

h̄c
. (8)

Then we introduce the new variable

ρ = kr k =
√
k1k2 =

√
E2 − µ2c4

h̄c
(9)

and two new functions u(ρ), v(ρ) through the definition

f (r) = 1
2

√
k1eiρ[u(ρ) + v(ρ)] g(r) = − i

2

√
k2eiρ[u(ρ) − v(ρ)] (10)

to recast equations (7) into the form

du

dρ
− iβ

ρ
u − iβ ′ + j + ν

ρ
v = 0 (11a)

dv

dρ
+ 2iv +

iβ

ρ
v +

iβ ′ − j − ν

ρ
u = 0 (11b)

where

β = γ

2

(√
k1

k2
+

√
k2

k1

)
= κ

h̄vc
(12a)

β ′ = γ

2

(√
k1

k2
−
√
k2

k1

)
= β

√
1 − v2

c

c2
(12b)

where vc is the classical velocity of the incident particle. This is more convenient. Indeed, one
can eliminate v immediately to obtain an equation for u alone:

ρ
d2u

dρ2
+ (1 + 2iρ)

du

dρ
+

(
2β − (j + ν)2 − γ 2

ρ

)
u = 0 (13)

where we have used β2 −β ′2 = γ 2. In this paper we assume for convenience that |γ | < 1
2 (for

electron–nucleus interaction, this means that Z � 68, which is in general satisfied in practice).
This is not quite enough. If |ν| is not close to 1

2 , we further assume that |γ | < | 1
2 ± ν|.

(This cannot hold if |ν| is very close to 1
2 , which causes some difficulty and will be discussed

separately in the following. A larger γ causes more difficulty.) Then for any j , the solution
of equation (13) is well behaved at the origin. Let

u(ρ) = ρsw(ρ) s =
√
(j + ν)2 − γ 2. (14)

Then we have for w the equation

ρ
d2w

dρ2
+ (2s + 1 + 2iρ)

dw

dρ
+ 2(β + is)w = 0. (15)

This is familiar. The solution that is well behaved at the origin is w(ρ) = &(s − iβ, 2s +
1,−2iρ), where &(a, b, z) is the confluent hypergeometric function [25]. So we have

uj (ρ) = ajρ
s&(s − iβ, 2s + 1,−2iρ) (16a)

where aj is a constant, and the subscript j of uj that is omitted above has been recovered.
Substituting this solution into equation (11a) we have

vj (ρ) = aj
s − iβ

j + ν + iβ ′ ρ
s&(s + 1 − iβ, 2s + 1,−2iρ) (16b)
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where we have used the formula(
z

d

dz
+ a

)
&(a, b, z) = a&(a + 1, b, z)

which can be obtained from other relations given in mathematical handbooks [25]. It should be
remarked that ψj may be slightly singular at the origin when j = ± 1

2 . However, the integral

of ψ†
j ψj over any finite volume converges and the solution is acceptable. This situation is

similar to the case of a pure Coulomb field [1]. We take

aj = A2s(j + ν + iβ ′)
+(s − iβ)

+(2s + 1)
exp

(
βπ

2
+ imπ − i

sπ

2
+ i

π

4

)
(17a)

where m = j − 1
2 and

A = i

√
2

πk

1√
k1 + k2

(17b)

then when r → ∞ we have for the radial wavefunctions the asymptotic forms

fj (r) → A
√
k1

[
im cos

(
kr + β ln 2kr − mπ

2
− π

4

)

+
1

2
(Sj − 1) exp

(
ikr + iβ ln 2kr − i

π

4

)]
(18a)

gj (r) → A
√
k2

[
im sin

(
kr + β ln 2kr − mπ

2
− π

4

)

+
1

2i
(Sj − 1) exp

(
ikr + iβ ln 2kr − i

π

4

)]
(18b)

to the lowest order, where

Sj = exp(2iηj ) = (j + ν + iβ ′)
+(s − iβ)

+(s + 1 + iβ)
exp(ijπ − isπ) (19)

and the ηj are phase shifts. The asymptotic form for ψ = ∑
j ψj , where the summation is

taken over all j , turns out to be

ψ → ψin + ψsc r → ∞ (20)

where

ψin = exp(−im0θ)√
k1 + k2

(
i
√
k1√
k2

)
ϕin (21a)

with

ϕin =
+∞∑

m=−∞
im
√

2

πkr
cos

(
kr + β ln 2kr − mπ

2
− π

4

)
eimθ (21b)

and

ψsc =
√

i

r
exp(ikr + iβ ln 2kr)f (θ)

exp(−im0θ)√
k1 + k2

(
i
√
k1

eiθ
√
k2

)
(22)

with

f (θ) =
√

2

πk

∑
j

exp(iηj ) sin ηjeimθ = − i√
2πk

∑
j

(Sj − 1)eimθ . (23)
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In spite of the presence of the AB potential, the probability current density associated with a
solution ψ is still given by

j = cψ†αψ. (24)

As in the case of a pure Coulomb field [1], one can show that the above ψ represents a correct
scattering solution of which ψin is an incident wave and ψsc the scattered one, f (θ) is the
scattering amplitude and the differential cross section is given by

σ(θ) = |f (θ)|2. (25)

The choice of aj in equations (17) is thereby proved to be appropriate. Since
∑

j eimθ =
2πδ(θ), we have for θ �= 0

f (θ) = − i√
2πk

∑
j

Sjeimθ . (26)

This result with Sj given by equation (19) is exact. However, it is even more difficult to sum
up the above partial wave series than in the case of a pure Coulomb field.

Let us consider the case with γ 2 � 1 and try to work out a closed result. For electron–
nucleus interaction we have γ ≈ Z

137 , so the above condition means that Z is small, say,
Z < 5. In this case we may approximately replace s by |j + ν| in equation (19). Note that β
also depends on γ and we do not make an approximation with it. Thus the result will possess
some nonperturbative features in regard to the parameter γ . With the above approximation,
Sj is replaced by

Sa
j = e−iνπ +(m + ν + 1

2 − iβ)

+(m + ν + 1
2 + iβ)

− i(β − β ′)e−iνπ +(m + ν + 1
2 − iβ)

+(m + ν + 3
2 + iβ)

(j > 0) (27a)

Sa
j = eiνπ +(|m| − ν + 1

2 − iβ)

+(|m| − ν + 1
2 + iβ)

+ i(β − β ′)eiνπ +(|m| − ν − 1
2 − iβ)

+(|m| − ν + 1
2 + iβ)

(j < 0). (27b)

It can be shown that the first term in either equation is equal to exp(2iδm) where δm is the
nonrelativistic phase shift of the mth partial wave, except for m = 0 when − 1

2 < ν < 0.
(The physical reason for the latter disagreement is not quite clear to us.) The second term
is a relativistic correction which vanishes when vc/c → 0. Substituting equations (27) into
equation (26), we have an approximate result for f (θ):

f a(θ, ν) = f0(θ, ν) + f1(θ, ν) (28)

where

f0(θ, ν) = − i√
2πk

[
e−iνπ +(

1
2 + ν − iβ)

+( 1
2 + ν + iβ)

F

(
1,

1

2
+ ν − iβ,

1

2
+ ν + iβ, eiθ

)

+eiνπ +(
3
2 − ν − iβ)

+( 3
2 − ν + iβ)

e−iθF

(
1,

3

2
− ν − iβ,

3

2
− ν + iβ, e−iθ

)]
(29)

is the nonrelativistic partial wave result (somewhat different when − 1
2 < ν < 0) and

f1(θ, ν) = −β − β ′
√

2πk

[
e−iνπ +(

1
2 + ν − iβ)

+( 3
2 + ν + iβ)

F

(
1,

1

2
+ ν − iβ,

3

2
+ ν + iβ, eiθ

)

−eiνπ +(
1
2 − ν − iβ)

+( 3
2 − ν + iβ)

e−iθF

(
1,

1

2
− ν − iβ,

3

2
− ν + iβ, e−iθ

)]
(30)
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is the relativistic correction. In these equations F(a1, a2, b1, z) is the hypergeometric
function [25]. Using their functional relations it can be shown that

f0(θ, ν) = −ie−iνθ +(
1
2 − ν + iβ)+( 1

2 + ν − iβ)

+(iβ)+( 1
2 + iβ)

exp(iβ ln sin2 θ/2)√
2k sin θ/2

− i√
2πk

[
eiνπ +(

3
2 − ν − iβ)

+( 3
2 − ν + iβ)

− e−iνπ +(− 1
2 + ν − iβ)

+(− 1
2 + ν + iβ)

]

×e−iθF (1, 3
2 − ν − iβ, 3

2 − ν + iβ, e−iθ ) (31)

and

f1(θ, ν) = −
(

1 − β ′

β

)
+( 1

2 + ν − iβ)+( 1
2 − ν + iβ)

+(iβ)+( 1
2 + iβ)

e−iθ/2−iνθ exp(iβ ln sin2 θ/2)√
2k

+
β − β ′
√

2πk

[
eiνπ +(

1
2 − ν − iβ)

+( 3
2 − ν + iβ)

+ e−iνπ +(− 1
2 + ν − iβ)

+( 1
2 + ν + iβ)

]

×e−iθF (1, 1
2 − ν − iβ, 3

2 − ν + iβ, e−iθ ) (32)

where 0 � θ < 2π . Note that these approximate expressions are well defined for the whole
range of ν, and will be employed in the following discussions for the case when |ν| is close to
1
2 . Unlike the case with a pure Coulomb field, here we have additional terms in both f0(θ, ν)

and f1(θ, ν), involving the hypergeometric functions. Thus closed forms are possible only
for special ν when the additional terms vanish. This happens when ν = 0 and ν = 1

2 . Since
the above discussions are not valid for |ν| close to 1

2 , we have now a closed result only when
ν = 0, or qφ/2πh̄c takes on integer values. The result is the same as in the case of a pure
Coulomb field:

f (θ) = f a(θ, 0) = −i
+( 1

2 − iβ)

+(iβ)

exp(iβ ln sin2 θ/2)√
2k sin θ/2

[
1 − ie−iθ/2 sin

θ

2

(
1 − β ′

β

)]
. (33)

Since the result is more singular than δ(θ)when θ → 0, the δ(θ) term that is dropped above for
θ �= 0 can indeed be dropped everywhere and the above expression is enough. The differential
cross section reads

σ(θ) = β tanh βπ

2k sin2 θ/2

(
1 − v2

c

c2
sin2 θ

2

)
= κ tanh(πκ/h̄vc)

2µv2
c sin2 θ/2

(
1 − v2

c

c2
sin2 θ

2

)(
1 − v2

c

c2

)1
2

(34)

where the first factor in the last expression is the exact nonrelativistic result†, and the subsequent
ones are due to the relativistic effect. We make some remarks similar to those made in [1]. First,
we have not made any approximation in regard to the incident velocity, so the result is valid for
high-energy collision. It is obvious that the relativistic correction becomes significant when
vc is comparable with c. Second, though the above result holds for small γ only, it involves
a nonperturbative factor tanh βπ (note that β ∝ γ ). Thus the result cannot be obtained from
perturbative QED at the tree level. Moreover, if m0 or φ is large, perturbative QED seems not
to be applicable, but the above calculations hold as well.

If ν is close to 1
2 (− 1

2 ) but |γ | < | 1
2 ± ν|, then the above discussions are still valid, but

then the replacement of S−1/2 (S1/2) by Sa
−1/2 (Sa

1/2) is a poor approximation. In this case some
corrections are necessary. Since no closed result is available, we do not discuss it in detail.

† In the nonrelativistic case when ν = 0 and m0 �= 0, we obtained an interference term in the cross section in
additional to the result for a pure Coulomb field, because we excluded the s-wave solution, which is slightly singular
at the origin [3]. Now it seems that the s-wave is acceptable and that the interference term is not necessary, because
the potentials themselves are rather singular at the origin. Indeed, in the relativistic case, the solutions with j = ± 1

2
are much more singular, and the singularity is essentially the same as that in a pure Coulomb field.
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Now we turn to the case when ν is very close to 1
2 such that |γ | > | 1

2 − ν| (the typical
case is ν = 1

2 ); then the above discussions have to be modified. We will discuss this in some
detail. (The other case with ν very close to − 1

2 can be discussed in a similar way and will be
omitted.) The crucial point is that s becomes imaginary when j = − 1

2 . (A larger γ causes the
same difficulty for other values of j .) So the solutions of equation (13) are now given by

u
(1)
−1/2(ρ) = a

(1)
−1/2 exp(iγ ′ ln ρ)&(−iβ + iγ ′, 1 + 2iγ ′,−2iρ)

u
(2)
−1/2(ρ) = a

(2)
−1/2 exp(−iγ ′ ln ρ)&(−iβ − iγ ′, 1 − 2iγ ′,−2iρ)

(35)

where

γ ′ =
√
γ 2 − ( 1

2 − ν)2. (36)

Here the two solutions have essentially the same singularity at the origin. They oscillate very
rapidly and tend to no limit when ρ → 0. In the conventional opinion of quantum mechanics,
such solutions are not acceptable [26, 27]. One possible way of resolving the problem is to
cut off the singular potentials (which represent some idealization) at some small radius, but
this causes some mathematical difficulties. On the other hand, some authors have attempted
to handle such solutions in some convenient way, and for bound states proposals have been
put forward to choose the appropriate linear combination of the two solutions [28, 29]. For
scattering solutions the situation seems more involved. Here we will resolve the problem by
some simple consideration. The solutions v(1)−1/2(ρ) and v

(2)
−1/2(ρ) can be easily obtained from

equation (11a) and the above u. We will not write them down. We take

a
(1)
−1/2 = A

[
β ′ + i

(
1

2
− ν

)]
+(−iβ + iγ ′)
+(1 + 2iγ ′)

exp

(
βπ

2
+
γ ′π

2
+ iγ ′ ln 2 − i

π

4

)
(37)

then the asymptotic forms for f (1)
−1/2(r) and g

(1)
−1/2(r) are given by equations (18) with S−1/2

replaced by

S(1) =
[
β ′ + i

(
1

2
− ν

)]
+(−iβ + iγ ′)
+(1 + iβ + iγ ′)

exp(γ ′π). (38)

However, |S(1)| �= 1, so S(1) cannot be expressed as a phase factor. We then take a
(2)
−1/2 by

replacing γ ′ by −γ ′ in a(1)−1/2, then the asymptotic forms for f (2)
−1/2(r) and g(2)−1/2(r) are given by

equations (18) with S−1/2 replaced by S(2), which is obtained by replacing γ ′ by −γ ′ in S(1).
As the two solutions above are equally preferable, we take the mean as the required solution.
Then the asymptotic forms for f−1/2(r) and g−1/2(r) are given by equations (18) with S−1/2

replaced by

S = 1
2 [S(1) + S(2)]. (39)

The solutions with j �= − 1
2 are all the same as those given before. So we finally obtain the

scattering amplitude (for θ �= 0)

f (θ) = − i√
2πk

[ ∑
j �=−1/2

Sjeimθ + Se−iθ

]
. (40)

This is a very complicated result. When γ 2 � 1, one can make approximations as before, but
closed results are available only when ν = 1

2 , or qφ/2πh̄c takes on half-integer values. We
have then

f (θ) = f a

(
θ,

1

2

)
− i√

2πk
(S − Sa

−1/2)e
−iθ . (41)
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Note that Sa
−1/2 is well defined in equation (27b). Since we have neglected γ 2 in calculating

f a(θ, 1
2 ), we can also neglect it in calculating S. It then turns out that S = Sa

−1/2 to the first
order in γ . So we have

f (θ) = f a

(
θ,

1

2

)
= −e−iθ/2 β+(−iβ)

+( 1
2 + iβ)

exp(iβ ln sin2 θ/2)√
2k sin θ/2

[
1 − ie−iθ/2 sin

θ

2

(
1 − β ′

β

)]
.

(42)

The differential cross section reads

σ(θ) = β coth βπ

2k sin2 θ/2

(
1 − v2

c

c2
sin2 θ

2

)
= κ coth(πκ/h̄vc)

2µv2
c sin2 θ/2

(
1 − v2

c

c2
sin2 θ

2

)(
1 − v2

c

c2

)1
2

(43)

where the first factor in the last expression is the exact nonrelativistic result [3], and the
subsequent ones are due to the relativistic effect. The remarks made under equation (34) are
also applicable here.

Finally we give some results concerning the bound states. If |γ | < | 1
2 ± ν|, the solutions

can be obtained without difficulty. The energy levels are

Enj = µc2

[1 + γ 2/(n + s)2]1/2
(44)

where n = 0, 1, 2, . . . is a radial quantum number, and s is defined in equations (14), and
depends on j . The level with n = 0 is not degenerate regardless of ν, since one can show that
only solutions with j > 0 are possible in this case. When n > 0, the degeneracy depends on
ν. If ν �= 0, there is no degeneracy. If ν = 0, the energy level depends on |j | rather than j ,
and solutions with both positive and negative j exist. So the level is double degenerate. It is
remarkable that there are no negative energy levels. The wavefunctions are given in terms of
confluent hypergeometric functions. Since the results are complicated we will not write them
down. If |γ | > | 1

2 ± ν|, s will become imaginary for some j . For such values of j , special
treatment [28,29] of the solution is necessary, and the results are rather involved. We will not
go into further details here.

In conclusion, we have calculated the scattering amplitude and differential cross section for
fast particles with ABC interaction in two dimensions. Exact results are given in partial wave
series in general cases. Approximate results in closed forms are given in special cases. Though
approximate, the results exhibit some nonperturbative features and cannot be obtained from
the lowest-order contribution of perturbative QED. We have also discussed the bound-state
solutions and given some results.
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